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Abstract
A review is given of recent angle-resolved photoemission (ARPES) experiments
and analyses on a series of layered charge density wave materials. Important
aspects of ARPES are recalled in view of its capability for bulk band, Fermi
surface and spectral function mapping despite its surface sensitivity. Discussed
are TaS2, TaSe2, NbTe2, TiSe2 and TiTe2 with structures related to the so-called
1T polytype. Many of them undergo charge density wave transitions or exist
with a distorted lattice structure. Attempts to explain the mechanism behind
the structural reconstruction are given. Depending on the filling of the lowest
occupied band a drastically different behaviour is observed. Whereas density
functional calculations of the electronic energy and momentum distribution
reproduce well the experimental spectral weight distribution at the Fermi
energy, the ARPES energy distribution curves reveal that for some of the
compounds the Fermi surface is pseudo-gapped. Two different explanations
are given, the first based on density functional calculations accounting for
the charge-density-wave-induced lattice distortion and the second relying on
many-body physics and polaron formation. Qualitatively, both describe the
observations well. However, in the future, in order to be selective, quantitative
modelling will be necessary, including the photoemission matrix elements.

1. Introduction

1.1. Context

This review is written in the context of surface methods, i.e. angle-resolved photoemission
(ARPES), used to map Fermi surfaces, and its aim is to illustrate and discuss the different
issues involved within this approach when applying it to layered compounds and in particular
to charge density wave (CDW) systems.
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Figure 1. Sketch of the CdI2-type 1T sandwich structure: transition metal atoms, M; chalcogen
atoms, X. The trigonal elongation of the chalcogen octahedra along the c axis is characterized by
the z parameter.

From the experimental point of view, it is important to distinguish between surface versus
bulk properties probed by the experiments, and to study implications for the experiment if
the electronic structure has a two-dimensional (2D) or a three-dimensional (3D) character.
Furthermore, why are we interested in mapping the Fermi surface (FS), and are we really
measuring the FS?

In fact, we would like to learn about the low energy excitations of electrons, what
interactions govern the properties of the system and whether we have quasiparticles. The
topology of the FS gives an indication on the possible scattering channels of quasiparticles
and is therefore an important ingredient for understanding the electronic properties. Naturally,
electronic and lattice degrees of freedom are not independent, an aspect particularly interesting
in CDW compounds where atom positions are modified, thereby lowering the electron energy.

The interplay between lattice and electronic degrees of freedom has received renewed
interest in the context of high temperature superconductivity and colossal magnetoresistance
materials where electron–phonon coupling and possible polaronic effects are considered [1, 2].
A significant contribution to the discussion is given by ARPES experiments via analysis of the
spectral function. Indeed, the one-electron removal spectral function is one of the ingredients
of the photoemission signal, containing the many-body physics of the system.

The interpretation of the photoemission signal is a challenge, trying to extract information
on the quasiparticles, their energy dispersion, self-energy and spectral function. The final goal
is to be able to obtain everything ranging from the electronic band structure and the FS to
the many-body physics and the excitation spectrum of electrons. The CDW materials present
several interesting aspects in this context. First, electron–phonon coupling plays a role by
definition and therefore these materials are a playground to study the interplay between the
atomic and electronic structure, i.e. what is the strategy of the material to optimize its energy,
thereby creating the CDW, and second, unconventional spectral features discovered in the most
important material’s class of high critical temperature (Tc) superconductors can be compared
to the ones obtained in this more conventional class of CDW compounds.

1.2. Transition metal dichalcogenides

In the present article we consider a series of transition metal dichalcogenides (TMDCs). We
discuss TaS2, TaSe2, TaTe2, NbTe2, TiSe2 and TiTe2, all in a structural form related to the
so-called 1T polytype crystal structure (figure 1). Layered TMDCs are a class of quasi-2D
materials. Many exhibit CDWs and even become superconducting at low temperatures. In
the ionic picture the transition metal atom (M) has a 5d36s2 (Ta), 4d45s1 (Nb) or 3d24s2 (Ti)
configuration. The chalcogen atoms (X), S, Se and Te, with high electron affinity, have all an
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Figure 2. (a) Calculated band structures, (b) surface and bulk Brillouin zones of the 1T structure
with labelled high symmetry points, (c) octahedral coordination of the metal atoms, (d) density of
states with orbital characters in the ionic picture.

s2p4 configuration, missing two electrons for a filled shell. Therefore, the two chalcogen atoms
per formula unit may attract a total of four transition metal d or s electrons and the degree of
filling of the lowest lying d band will delicately influence the properties of the compound [3].
Nominally, Ta and Nb related compounds will be in a d1 configuration, whereas the ones with
Ti will remain with zero d electrons (d0).

Of course, hybridization will modify this simplified view, but it is clear that the material’s
properties will be highly sensitive to the number of d electrons. The lower the number of
electrons at the Fermi level (EF), the weaker the screening and the higher the tendency to
instabilities. In this regard it seems likely that the heaviest metal (smallest electronegativity)
together with the lightest of the chalcogen atoms (largest electronegativity), i.e. TaS2, gives the
most unstable combination and, on the other hand, TiTe2 the most stable one. Indeed, TaS2 has
the most complicated phase diagram and TiTe2 is a prototype for a 2D Fermi liquid.

Band-structure calculations (figure 2(a)) confirm that the six lowest lying bands are mainly
chalcogen related sp bands followed by a partially filled transition metal d band (downwards
pointing arrows) and the rest of the metal d bands. The bulk Brillouin zone (BZ) of the
threefold symmetric 1T structure as well as the surface BZ (SBZ) with corresponding high
symmetry points is indicated in figure 2(b). Due to the octahedral coordination of the metal
atoms (figure 2(c)), the five d bands are split into a lower triplet of t2g states and an upper
doublet of eg states (figures 2(a) and (d)). The σ bonding eg orbitals have higher energies
because they interact strongly with the neighbouring chalcogen atoms. The orbital degeneracy
of the octahedral t2g manifold is reduced in a Jahn–Teller-like fashion by a trigonal elongation
of the chalcogen octahedra along the c axis. This elongation influences the overlap of the
metal d band with the highest chalcogen sp bands (figure 2(a), arrows pointing upwards) and
is characterized by the so-called z parameter as indicated in figure 1(a). A larger z parameter
indicates a larger metal–chalcogen distance and tends to lower hybridization.

Among the 1T compounds studied, TaS2 and TaSe2 are similar since they both exhibit
an incommensurate (IC) CDW with (

√
13 × √

13) symmetry at high temperature. At low
temperature both compounds lock into the commensurate CDW with (

√
13 × √

13)-R 13.9◦
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symmetry. 1T -TaS2 is more complicated, additionally exhibiting a quasi-commensurate (QC)
phase at intermediate temperature. TaTe2 and NbTe2 both stabilize in a monoclinically distorted
version of the trigonal 1T polytype and can be interpreted as a (3 × 1) reconstruction [4, 5].
Unlike TaTe2, NbTe2 becomes superconducting at ≈0.5 K [6]. After cooling of heat pulsed
crystals to room temperature, transmission electron diffraction experiments reveal a second,
CDW state with a (

√
19 × √

19) signature [7–9], commensurate at room temperature, but
readily rendered incommensurate just above. This observation is interesting since it links to the
(
√

13 × √
13) reconstruction of TaS2 and TaSe2.

1T -TiSe2 is different in the sense that the lattice is not distorted at room temperature. A
(2×2×2) reconstruction appears at ≈200 K together with a maximum in the resistivity [10, 11].
1T -TiTe2 does not show any phase transition, remaining in its trigonal high symmetry phase,
and is considered to be a prototype of a 2D Fermi liquid.

To get an overview on the different compounds we can classify them into two categories,
the Ta (including Nb) compounds with d1 configuration and the Ti related compounds with d0

configuration. ARPES results within a given category are rather similar. Numerous studies of
the electronic properties have been carried out for TMDCs [12–23]. For practical reasons, in
this review article, results will be shown only for some of the compounds, but the discussion
will involve all of them.

2. Aspects of photoemission

Even for quasi-2D materials such as the layered TMDCs, the photoemission experiment
proceeds in the real 3D world and attention has to be paid to the fact that the escape depth of
electrons is small. The result is that ARPES is very surface sensitive unless extremely high (of
the order of a few keV) or low (5–10 eV, e.g. lasers) photon energies are used (i.e., the mean free
path of electrons increases significantly at high and low electron kinetic energies). Therefore,
experiments such as the ones presented here effectively probe the surface electronic structure.
Depending on the material and the presence of surface relaxation and/or reconstruction of
atomic positions, so-called surface states may exist besides the bulk states. While surface
states are interesting by themselves, they are not relevant for the bulk physics we are interested
in here. Surface states (perfectly 2D objects) may exist in a region of wavevectors parallel to
the surface (�k‖ region) and an energy interval where there are no bulk states available for all
wavevectors perpendicular to the surface (�k⊥), i.e. where the bulk band structure is gapped.
Furthermore, surface states are very sensitive to surface modification, e.g. due to adsorbates or
contamination, and do not show any dispersion as a function of �k⊥. From these criteria we did
not find indications for surface states in the experiments presented here.

Another important aspect occurring due to the surface sensitivity of ARPES is the
following. Within first order time dependent perturbation theory ARPES is described by the
Fermi golden rule giving the transition probability between two stationary states due to the
perturbation, i.e. the photon field. Since for ARPES the contribution of the surface is dominant,
the stationary states are the ones respecting the boundary conditions of a semi-infinite solid.
These are called inverse LEED states, named in connection with the low energy electron
diffraction (LEED) experiment. The point is that, parallel to the surface, periodicity is intact
(maintaining Bloch states with quantum number �k‖, 2D Bloch states) whereas it is broken
perpendicular to the surface (�k⊥ is not a good quantum number, i.e. it is not conserved). In
quantum mechanics, a trick is to still use �k⊥ as a quantum number but to give it a ‘lifetime’ or a
‘broadening’ (�k⊥ broadening), instead of admitting a linear combination of basis functions from
a complete set (i.e. the 3D Bloch functions) and calculating the inverse LEED states. Often in
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the literature this non-conservation of �k⊥ is associated with an electron and hole lifetime and
the finite mean free path of the electron. The lifetime and mean free path of the electron due
to interactions, however, are not specific for �k⊥. But the association may be understood by the
fact that electron interactions are indeed responsible for the surface sensitivity and therefore for
the non-conservation of �k⊥.

As a consequence, a strict momentum conservation of the 3D wavevector �k is not
guaranteed and only �k‖ is conserved. This may have dramatic consequences, particularly for
3D materials where for a given �k‖ different �k⊥ contribute to the ARPES signal, especially for
�k⊥ with a high density of states (DOS), leading to a �k⊥ smearing and the measurement of the
so-called 1D-DOS [24]. For 2D materials, as is our case, the situation is to our advantage in
the following sense. The transition in the Fermi golden rule goes from the initial state (ground
state of the N-electron system) to the final state, consisting (within the sudden approximation)
of an (N − 1)-electron system with a factorized independent electron in the detector. The
(N − 1)-electron system of the 2D material leads to the description of the ARPES signal in
terms of the one-electron removal spectral function A (�k‖, ω) depending only on �k‖ and the
electron energy ω and a 3D final state single electron reaching the detector. This 3D final state
indeed suffers from �k⊥ broadening, also inducing an energy broadening, with the advantage of
filling possible final state energy gaps. For strictly 2D electron systems this final state energy
and �k⊥ broadening do not affect the line shape of the ARPES signal, it is only influenced via
an energy and �k dependent matrix element. However, a slight departure from the 2D character
may already result in a broadening, not to be confused with spectral function effects (many-
body physics) [25].

3. Experiments and calculations

Traditionally, in ARPES, relatively few energy distribution curves (EDCs) were measured for
different angles in order to determine the band structure and the �k‖ location where bands cross
EF. Then, Santoni et al [26] used an alternative method to obtain the same information. With
a 2D display-type analyser they mapped the FS of layered graphite directly by measuring
the total intensity within a narrow energy window at EF. Inspired by [26], sequential angle-
scanning data acquisition [27, 28], as introduced by the surface structural x-ray photoelectron
diffraction (XPD) method, was used to map the intensities within a narrow energy window
at the Fermi energy [29–31]. It was also realized that simple intensity mapping at EF as
a function of angle or �k‖ might not be sufficient to determine the Fermi vector (�kF) and
that a combination of intensity mapping and EDCs is necessary in order to verify whether a
quasiparticle peak indeed crosses the Fermi level [32]. Another, most important, finding was
that so-called angular distribution curves (ADCs), nowadays also called momentum distribution
curves (MDCs), i.e. intensities as a function of angle or �k‖ for a fixed binding energy, are much
easier to interpret and to fit for quantitative interpretation in terms of the spectral function
than the traditional EDCs because of their much simpler line shape (Lorentz-function type
functionality of the spectral function) [33–36]. The analysis of ADCs instead of EDCs has
been applied successfully to the cuprate high Tc superconductors [37]. These ARPES modes
are well established now and have proven their power on many systems [31, 32, 36, 38].

ARPES EDCs were acquired with a Scienta SES-200 hemispherical electron energy
analyser with energy and angular resolution of 5 meV and 0.25◦, respectively, while the Fermi
surface mapping (FSM) measurements have been collected in a modified Vacuum Generator
ESCALAB mark II spectrometer [39] with energy and angular resolution of 50 meV and 0.5◦,
respectively. The sequential motorized sample rotation has been described elsewhere [31].
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Figure 3. Fermi energy maps for (a) TaS2 and (b) TiSe2. Raw data have been normalized by
the mean azimuthal value (see text). (c) Density functional theory based simulation; inscribed are
the CDW-induced reconstructed BZs. High intensity is in white. (d) Sketch of the elliptically
shaped Fermi energy contours for nominally one-d-electron (large ellipse) and zero-d-electron
(small ellipse) filling.

Monochromatized He I photons of energy 21.22 eV were used for all measurements
reported here. The samples were prepared by vapour transport and cleaved in situ at pressures
in the 10−10 mbar region at room temperature. Surface cleanliness before and after ARPES
measurements was monitored by x-ray photoelectron spectroscopy (XPS), while LEED was
used to check the sample orientation and the evolution of the CDW superstructures. The Fermi
energy and instrumental energy resolution were calibrated by measuring a polycrystalline
copper sample.

First-principle calculations were performed in the framework of density functional theory
(DFT) using the full potential augmented plane wave plus local orbitals (APW + lo) method
in conjunction with the generalized gradient approximation (GGA) in the parametrization of
Perdew, Burke and Ernzerhof [40] as implemented in the WIEN2k software package [41] as
well as the ABINIT code [42]3 using the local density approximation (LDA) and relativistic
separable dual-space Gaussian pseudopotentials [43]. A recent extension to WIEN2k based
on the OPTICS package allows the computation of the imaginary part of the static electronic
susceptibility χ(�q) [44]. The phonon dispersion is computed with the help of density functional
perturbation theory (DFPT) capabilities of ABINIT [45, 46].

4. Results and discussion

4.1. Pseudo-gap and missing Umklapp bands

Figure 3 presents FSMs for TaS2 and TiSe2 collected at room temperature (figures 3(a) and (b)).
A DFT based calculation for the undistorted or normal state structure, using a free electron final

3 The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated and other
contributors (URL http://www.abinit.org).
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Figure 4. He I excited energy distribution curves along the �̄–M̄ direction for NbTe2, TaS2 and
TiSe2.

state, is shown in figure 3(c). The measurements shown in figures 3(a) and (b) are typical for
the nominally one- and zero-d-electron compounds, respectively (see above). The different
filling translates into a different sized ellipse around the M̄ point as illustrated in figure 3(d). In
fact, FSMs for TaSe2 [19] TaTe2 and NbTe2 [5] are very similar to the result for TaS2, and the
FSM for TiTe2 [32] resembles the one of TiSe2.

The calculated lines (only shown for TaS2, figure 3(c)) agree well in shape with the
measurements for all compounds. Differences exist mainly in the intensities with marked
threefold symmetry for the experiments. This is attributed to matrix element effects [13]. Note
that figure 3(a) presents normalized data. In fact, for the raw data (not shown, see [5, 12, 13, 19])
intensity is maximal near normal emission (�̄) and falls off rather quickly towards larger polar
angles. This behaviour is observed for TaS2, TaSe2, TaTe2 and NbTe2 and has been attributed
to the dz2 character of the transition metal band [13]. A normalization of the FSM by the mean
intensity for each polar emission angle as shown in figure 3(a) eliminates this dependence and
allows us to reveal weaker off-normal features. However, centred circular features are then
suppressed, with the consequence that the closing of the ellipse near �̄ is not apparent in the
normalized data.

The important point to notice is that the CDW induced lattice distortion is present at room
temperature for TaS2 and TaSe2 as well as TaTe2 and NbTe2. However, the corresponding
umklapp bands with the symmetry of the BZs due to the reconstruction (as inscribed in
figure 3(c)) are not clearly observed. A second important observation is that, again for all
but TiSe2 and TiTe2, the high intensity lines in the experiment do not correspond to Fermi
energy crossings of intensity maxima or quasiparticle peaks [19, 5, 12]. This is verified with
EDCs measured across these high intensity lines as shown in figure 4. EDCs are displayed
along the �̄–M̄ direction for NbTe2, TaS2 and TiSe2. The dispersion of the d band is what is
expected from the elliptically shaped FSM contours. What is striking, however, for NbTe2 and
TaS2, is a characteristic back-bending of the intensity maximum when approaching EF, not
crossing EF but provoking considerable spectral weight at EF (as seen in the FSM in figure 3).
No quasiparticle crossing has been found for any of the measured energy dispersion curves.
Thus, strictly speaking, the maps for TaS2, TaSe2 and NbTe2 are not Fermi surfaces. The
observed intensity originates from bands which come close to the Fermi level, but must not
be associated with quasiparticle crossings, but rather spectral weight which leaks across the
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Figure 5. Band-structure calculations for CDW phase. (a) Sketch of the Ta plane with CDW-
induced (

√
13 × √

13)-R 13.9◦ reconstruction. (b) TaS2 normal state (large hexagon) and CDW-
induced (small hexagons) BZs. (c) TaS2 band-structure calculation for the distorted structure (dotted
lines) calculated along high symmetry points of the normal state BZ together with the band structure
of the normal state structure (open circles). (d) Sketch of the behaviour of the band structure and
Fermi surface contours of a quasi-1D system with one electron per unit cell. Arrows indicate weak
spectral weight observed on Umklapp bands (see text).

Fermi level. The signature of such a pseudo-gapped Fermi surface is also observed in high Tc

superconductors [47] and has remained a controversial topic.
Therefore, for all but TiSe2, the FSMs show that there is a so-called pseudo-gapped Fermi

surface. As for TiSe2, this is also not the case for TiTe2, considered as prototype for a 2D Fermi
liquid [48–50] where ARPES shows sharp quasiparticle peaks becoming increasingly narrow
when approaching EF according to what is expected from their lifetime.

The point to discuss is whether the two observations, i.e. a pseudo-gapped FS and the non-
observation of the Umklapp bands, are connected. From a deeper investigation of TaS2 using
DFT calculations it turns out that a connection can be made [19] as follows. From a band-
structure calculation point of view, even the slightest atom displacement inducing a structural
reconstruction with symmetry breaking (such as indicated in figure 5(a)) will immediately
introduce a new BZ (figure 5(b)) with back-folded bands (figure 5(c)). However, for
infinitesimal atom displacements the electron wave functions probed by ARPES will practically
be unaffected. Therefore, a band-structure calculation of the reconstructed crystal structure
will display a wealth of new bands (sub-bands, dotted lines in figure 5(c)), but the spectral
weight distribution measured by ARPES will basically continue to follow the band structure
of the unreconstructed lattice (open circles in figure 5(c)) [51]. In figure 5(d) the situation is
explained for a quasi-1D atomic chain. The top and bottom panels show the unreconstructed
and reconstructed chains, respectively. The influence of the reconstruction on the electronic
structure (back-folded bands, FS) is sketched (arrows). The spectral weight on the new bands

8
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Figure 6. (a) TaS2 Fermi energy map measured in the commensurate phase at 20 K. Superimposed
on it are the (1×1) BZ boundaries as well as the BZ boundaries of the commensurate (

√
13×√

13)-
R 13.9◦ superstructure in thin dashed lines. (b) Free-electron final-state calculation based on the
(CDW phase) band structure (figure 5(c)). High intensity is in white.

will depend on the scattering strength of the potential with the new symmetry. With this in mind
we can understand that the observed EDCs (figure 4) display an intensity distribution following
the sub-bands, but are heavily weighted by the bands of the unreconstructed structure. This is in
agreement with the observation of a pseudo-gap since the topmost sub-band is present all over
the BZ with empty states very close to EF (figure 5(c)). Within this explanation, we always
find spectral weight at EF, whether it is originating from thermal occupation via the Fermi–
Dirac distribution or whether states are truly below EF. However, since these states are merely
straddling EF, we cannot observe a true crossing of a quasiparticle peak and hence experience
a pseudo-gap behaviour displaying an intensity distribution of spectral weight according to the
unreconstructed lattice. Figure 6 is in agreement with this view. It shows the spectral weight
distribution at EF for TaS2 measured at 20 K deep in the commensurate CDW phase, together
with an FSM calculated for the (

√
13 × √

13)-R 13.9◦ structure (see also figure 5(c)). The
agreement is nice with high intensity in the centre of the new BZs. However, TaS2 when
transiting to the commensurate CDW phase undergoes a Mott transition [52, 53] and is not
metallic anymore. Nevertheless, the remaining experimental spectral weight distribution at EF

follows the symmetry of the new BZs [54]. Therefore, a possible explanation of the pseudo-gap
is given using the single-particle picture and band-structure calculations together with the fact
that Umklapp bands carry only weak spectral weight. Although an identical analysis for TaSe2,
TaTe2 and NbTe2 has not been done, a similar explanation may also apply.

4.2. Fermi surface nesting

The next point, which will lead us to a deeper understanding, is the question of the origin of
the lattice distortion. What is the strategy of the material to gain electronic energy necessary
to compensate the elastic energy for the lattice distortion? The classical mechanism in 1D for
the occurrence of a CDW is the Peierls instability [55, 56], where a metal becomes unstable
with respect to a spatially modulated perturbation with wavevector �qCDW equal to twice the
Fermi vector 2�kF (figure 5(d)). This leads to the formation of electron–hole pairs with the same
wavevector and finally to the opening of a gap which provides a gain in electronic energy in
order to compensate the elastic energy paid for the lattice distortion. Figure 5(d) (top) displays
the case of a strongly nested FS as indicated by arrows connecting nested (parallel) parts of
the FS contour. One electron per atom (and unit cell) of chains of atoms with distance a is

9
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assumed. Therefore, the Fermi vector is kF = π/(2a) since the quasi-1D band is half filled.
The BZ boundary is located at 2kF = π/a (figure 5(d), top). If the lattice is distorted in
order to double the periodicity, i.e. to introduce a CDW with wavelength 2a, elastic energy has
to be paid. At the same time a doubling of the periodicity in real space results in reducing
the dimension of the BZ by a factor of two. The consequence is that the new BZ boundary
is now located at kF = π/(2a) and the band is full (two electrons per unit cell, due to the
doubling of the periodicity) with the opening of a gap at the new BZ boundary at π/(2a) and a
corresponding gain of electronic energy. However, especially for long �qCDW (with many small
new BZs) and imperfect nesting (with remaining small metallic pockets) it may be difficult to
follow in detail the reconstruction and back-folding of bands unless they carry enough spectral
weight (see above). The driving force for such an instability is given by the topology of
the Fermi surface (FS), which has to present favourable nesting conditions. Namely, large
portions of the FS have to be connected or nested by the vector �qCDW. A good indicator of
the quality of the nesting is the imaginary part of the static electronic susceptibility χ(�q) [57],
which, in linear response theory, relates the response of the system to the perturbation. An
estimate of the imaginary part of the static electronic susceptibility χ(�q) may be defined as
Im χ(�q) = ∑

n′,n,�k δ(εn′,�k+�q − εn,�k), neglecting matrix elements [58, 5]. The Dirac function
δ gives a contribution of either unity or zero depending on whether �q is a nesting vector
or not.

For TaS2, computation of Im χ(�q) [54] (not shown) for q⊥ = 0 gives a local maximum
around �q‖ = 1/

√
13 × �a∗, consistent with Myron’s [59] calculations obtained for a more

limited set of �q vectors. The maximum is located along the �–M direction, 13.9◦ off with
respect to the CDW wavevector of the commensurate phase. This is consistent with the CDW
direction of the IC phase rotation by 13.9◦ while passing through the IC to QC phase transition.
However, while FS nesting is a plausible explanation for the onset of the CDW, the overall quite
large value of χ(�q) found at least along �–M is intriguing and questions whether a relatively
small and broad maximum at �q‖ = 1/

√
13 × �a∗ is sufficient to explain the occurrence of the

IC CDW. As pointed out by Johannes et al [57], definitive evidence for the contribution of
nesting to the CDW formation needs confirmation by calculations of the real part of the static
electronic susceptibility. Currently this calculation is beyond our capabilities. Nevertheless, we
can expect a local maximum in the real part. In fact, given the geometry of the FS of 1T -TaS2,
the maximum in the imaginary part of the susceptibility at the correct �qICCDW vector can be
attributed to the presence of flat areas on the FS, and numerical simulation (not using DFT) for
a 2D toy model (not shown), i.e. closed FS with flat areas, leads to a local maximum not only
in the imaginary part of the susceptibility but also in the real part of the susceptibility.

For NbTe2 the situation is more clear cut. Its structure is a monoclinically deformed 1T
arrangement. LEED measurements suggest that the structure can be understood in terms of a
(3 × 1) superstructure. For completeness, we note that the bulk structure exhibits a (3 × 1 × 3)

supercell structure, since successive layers are shifted within the plane. The results of Im χ(�q)

calculations are presented as linear grey scale plots in figure 7(a), with white indicating a large
response of the electron system. Strong nesting is present for small, but non-vanishing, �q
vectors. These contributions are due to intraband nesting from weakly dispersing bands and
can be reduced by choosing a smaller energy window.

Highly interesting is the peak at �q = 1
3

�a∗ along the �M and �M′ directions in figure 7(a)
(feature 1). We associate this peak with a nesting vector leading to the (3 × 1) superstructure
observed by LEED and plotted in the calculated FS cut in figure 7(b). Thus, the electronic
structure of trigonal NbTe2 appears unstable with respect to a potential with wavevector
�q = 1

3
�a∗. As discussed in [5], a second maximum (feature 2) at q = 0.19a∗ along �K might

be related to the (
√

19 × √
19) CDW phase, which was observed after cooling of heat-pulsed
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Figure 7. Calculations for 1T -NbTe2. (a) Results of Im χ(�q) calculations within the first Brillouin
zone at qz = 0 (�MK plane) obtained by integration of the APW+lo FS. The peak marked 1
occurs exactly at qx = 1

3 a∗. Feature 2 is close to the nesting vector of the
√

19 × √
19 CDW

phase. (b) APW + lo calculations of cuts through the Fermi surface at kz = 0 and kz = c∗/2.
Nesting vectors of length q = 1/3a∗ feature 1 and q = 0.19a∗ feature 2 are indicated. (c) Phonon
dispersion of 1T -NbTe2 along high symmetry lines obtained by the response function capabilities of
ABINIT. Frequencies below 0 meV are imaginary. All degrees of freedom within the trigonal P 3̄m1
space group were relaxed using the Broyden–Fletcher–Goldfarb–Shanno minimization scheme as
implemented in the ABINIT code.

crystals to a temperature just above room temperature [9]. Cuts through the FS with indicated
nesting vectors corresponding to features 1 and 2 are shown in figure 7(b).

The occurrence of a maximum in the electron susceptibility alone does not explain the
distortion to the monoclinic structure. The presence of a perturbation with the corresponding �q
vector is necessary. In the one-dimensional Peierls scenario this potential is provided by a soft
phonon mode.

The DFPT phonon band structure for the relaxed trigonal NbTe2 structure obtained by
diagonalization of the dynamical matrix along high symmetry lines is shown in figure 7(c).
The lowest lying acoustic branch exhibits imaginary frequencies. DFPT contains the implicit
assumption that phonons are simple harmonic modes. Soft modes are by definition anharmonic
and their frequency goes to zero. Zero frequency implies that the lattice structure is unstable and
will transform, typically, to a lower symmetry phase. In the extreme case, electronic structure
calculations may give an imaginary phonon frequency, indicating that the ideal structure is
unstable [60]. The phonon frequencies are the square roots of the eigenvalues of the dynamical
matrix. Imaginary frequencies correspond to negative eigenvalues of the dynamical matrix.
A negative entry in the diagonalized dynamical matrix contributes a negative energy to the
total Hamiltonian, indicating that the expansion was not carried out around the equilibrium
configuration. Thus there exists an energetically more favourable configuration. At high
temperature, the lattice has sufficient energy to overcome the energy barrier between two
or more symmetry-related variants of the low temperature structure such that the average
observed structure has higher symmetry. In such cases the ideal structure is stabilized by high
temperature and will undergo a phase transition on cooling, to a low temperature phase whose
symmetry differs by the symmetry of the imaginary mode.
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(a) (b)

Figure 8. (a) Schematic inverse photoemission (IPES, ω > 0) and photoemission (PES ω < 0)
spectral functions adapted from the numerical calculations of the Holstein problem for the two
limits of weak and strong coupling [65]. (b) Spectral function of a single fixed electron coupled to
a bath of phonons of frequency ω0 [66]. The spectrum consists of a multi-peak structure and the
quasiparticle ground state is shifted from the free electron energy εc by 
, which is larger for strong
coupling. The stronger the coupling the more spectral weight is transferred to the satellites (l > 0),
with maximum intensity on the centroid of the spectrum.

The most unstable modes in figure 7(c) occur along �q = (1/3, 0, qz)a∗. This strongly
supports the Fermi surface nesting scenario for NbTe2. Furthermore, from an analysis of the
eigenvectors of the dynamical matrix, the distorted structure may be qualitatively constructed.

4.3. Electron–phonon coupling

Despite the explanation given above for the absence of any clear quasiparticle crossing at EF

using DFT calculations, relying on many new BZs and Umklapp bands with weak spectral
weight, the broad spectral weight distribution instead of delta-function-like peaks is peculiar.
Electron–phonon coupling is expected to be relatively strong for the CDW compounds [9]
and consequently polaronic effects may also play a role. Polarons recently received increased
attention for the interpretation of anomalously broad ARPES features [1, 50, 61]. The polaron
concept was first introduced by Landau [62] and represents an electron moving in a polarizable
lattice carrying the lattice deformation with it. In the Holstein model [63] one assumes an
on-site coupling of the electrons with dispersionless lattice vibration modes. Thus this model
is adapted to short range electron–lattice interaction and refers to a small polaron. Since for
increasing strength of the coupling the polaron radius shrinks to a single lattice site, the Holstein
model is more suitable to study strong interactions. In the case of the Fröhlich Hamiltonian [64]
long range electron–lattice interaction is also active with lightly dressed particles polarizing the
environment weakly in a large spatial extent around themselves. Thus in this case the polaron
is called a large polaron. The influence of electron–phonon coupling, if strong enough, may
even gap a non-nested FS as shown by recent numerical calculations of the spectral function
for the spinless Holstein model [65]. An illustration of this behaviour at half filling is shown in
figure 8(a). In the weak coupling regime most of the spectral weight close to kF resides in the
polaronic quasiparticle. The dispersion of this band exhibits a mass enhancement due to the
weak dressing of the electron. Further away from kF the polaron band is no longer visible since
most of the spectral weight is transferred to the incoherent part which follows the bare (not re-
normalized) dispersion ε(k). For strong coupling the spectrum consists again of the polaronic
quasiparticle and an incoherent part. However, as a consequence of the predominantly local
effects in the strong coupling regime, the polaron quasiparticle contains almost zero electronic
spectral weight for the whole momentum range and turns into a very narrow band. The
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Figure 9. (a) ARPES intensity maps measured along the azimuthal angle at a polar angle of 14◦,
for the IC and QC phases. (b) Symmetrized plots of the zone delimited by the dashed rectangle on
the maps of (a). The corresponding location in the surface reciprocal space is shown by the curved
arrow on the FS sketch in (d). (c) EDCs extracted from the maps plotted in (a), in black for the QC
phase and grey for the IC phase. The dashed arrow is located at the same position as the dashed
arrows of (a). (d) The black ellipses represent a sketch of the FS where are also superimposed the
(1 × 1) BZ and the (

√
13 × √

13)-R 13.9◦ BZ boundaries in continuous grey lines and dashed grey
lines, respectively.

incoherent part, where the electronic spectral weight is concentrated, broadens and does not
cross the Fermi level but flattens in its proximity, forming a pseudo-gap.

Intuitively, this behaviour can be understood from the exactly solvable model for the
coupling of a single electron to a bath of independent phonons of frequency ω0 [66]. The broad
line shapes as well as the vanishingly small quasiparticle spectral weight comes naturally from
the calculated spectral function of this model. Figure 8(b) sketches the outcome for the fixed
particle with bare energy εc interacting with a set of Einstein phonons of frequency ω0. Due to
the coupling the ground state energy is shifted by 
 = gω0, g being the coupling. The spectral
function is an envelope of many individual peaks spaced by ω0. The peak closest to the Fermi
level is the quasiparticle peak or zero-phonon peak. It is shifted by 
 from the non-interacting
energy position εc. The following peaks are satellites. They indicate that the single electron
is not an eigenstate of the Hamiltonian and the particle has a finite probability of occupying
other states carrying l phonons with it. From the photoemission point of view it means that
a removal of an electron from the system occurs with a probability of shaking off a certain
number of bosons. This picture also refers to what is called the Franck–Condon broadening.
Depending on the coupling more or less spectral weight is concentrated on the quasiparticle
peak and the broadening is more or less pronounced. A polaron scenario thus allows us to
explain the apparent absence of quasiparticle crossings as well as the broadened line shape in
the experimental ARPES spectra.

Figure 9 presents ARPES measurements in the IC and QC phases, taken at 350 and 344 K,
respectively. The intensity plots (high intensity in black) on figure 9(a) are azimuthal cuts
taken at a polar angle of 14◦ with respect to �̄. The only visible band, near EF, originates
from Ta 5d electrons. In figure 9(b) these intensity plots are symmetrized with respect to the
Fermi level and summed, in order [67, 68] to remove the perturbative effect of the Fermi–
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Dirac distribution cut-off and to infer whether the spectral function peak crosses the chemical
potential or not. Figure 9(c) shows the EDCs corresponding to the intensity plots shown in
figure 9(a). In figure 9(d) a sketch of the FS contours is drawn, together with a superposition
of the normal- and commensurate-state BZs. The curved arrow indicates the location of the
intensity plots of figure 9(a). The presumed nesting vector qCDW is also drawn according to the
calculation of Im χ(�q), connecting flat parts of the elliptically shaped FS with large, possibly
nested (parallel) portions which have strongly turned the discussion of the origin of the CDW
towards the nesting scenario.

In the following strong similarities with figure 8 become evident, giving good reasons for
a polaron scenario. Experimentally, large parts of the FS have been investigated (not shown)
and we do not observe a different behaviour than that shown in figure 9 and described next.

In the IC phase (figures 9(a) and (b), left) a broad Ta 5d band flattens and narrows slightly
when approaching EF, giving rise to a small maximum centred at EF in the symmetrized plot.
In a standard interpretation of the symmetrization procedure this would be attributed to a Fermi
level crossing of the quasiparticle peak. However, band calculations predict a linear slope
through EF and no flattening is observed. Moreover, within the Fermi-liquid picture ARPES
peaks are attributed to quasiparticle excitations whose lifetime increases when approaching EF.
However, in our case the Ta 5d peak remains anomalously broad near EF. Thus we are clearly
in the presence of a renormalized band which touches EF without clearly crossing it.

An enhancement of the previous anomalies can be observed upon cooling down to the QC
phase (figure 9(c)). The line shape gets abruptly broader (when lowering T by only 6 K); the
centre of mass of the Ta 5d band shifts towards higher binding energy when approaching the
Fermi vector and becomes clearly separated from a small maximum visible in the symmetrized
plot (figure 9(b), right). This symmetrization peak originates from a finite spectral weight
near EF. As described above, Bovet et al [19] attributed this to a reconstruction induced
band coming from above and merely straddling EF. In the polaron picture proposed here, this
finite intensity near EF is also compatible with a remnant weight of the coherent quasiparticle
(figure 8) [65].

The changes between the photoemission spectra of the IC and QC phases are abrupt and
are interpreted as a change of the electron–phonon interaction character. Indeed, in 2D or 3D
systems there is a qualitative dependence of the polaron type (large or small) on the range
of the electron–lattice interaction [69]. While large polarons are formed if the electron–
lattice interaction due to the long range Coulombic interaction between electronic carriers and
lattice ions is of predominant importance, small polarons form if the short range electron–
lattice interaction such as the deformation potential interaction dominates. The formation of
the commensurate domains in the QC phase introduces, as shown above, the ‘stars of David’,
which can be identified with small molecules acting as potential wells and hence favouring the
short range interaction. Therefore, the CDW in the IC phase leads to a static deformation of the
whole lattice structure, which, in turn, leads to a more local character of the electron–lattice
interaction and an enhancement of the electron–phonon coupling strength, i.e. to a lattice-
distortion-enhanced electron–phonon coupling.

For TaSe2 and NbTe2 it is likely that the situation is similar, although a detailed analysis
has not been made. Inspecting the spectra in figure 4 reveals a very similar behaviour of broad
peaks approaching EF without crossing it together with spectral weight at EF responsible for
the FSMs being in good agreement with DFT calculations reproducing the image of the bare
dispersion. For TiSe2 and TiTe2, however, the scenario appears to be very different. Sharp
quasiparticle peaks are clearly crossing EF. For TiTe2, the FL prototype, this is understandable,
but TiSe2 undergoes a CDW transition and the mechanism for the system to gain electronic
energy is under debate [70–72].

14



J. Phys.: Condens. Matter 19 (2007) 355002 F Clerc et al

5. Conclusion and outlook

In summary, we have discussed a series of transition metal dichalcogenides related to the 1T
structure, therefore having similar crystallographic and electronic structures. We have observed
a distinctly different behaviour between the compounds with, according to the ionic picture,
nominally one and zero d electrons in the lowest occupied d band.

The d1 compounds all show a very similar behaviour as observed with ARPES and all
present lattice distortions deviating from the 1T structure. The ARPES intensity distribution
at EF is well described by the single-particle or DFT-based band structure obtained for the un-
reconstructed 1T structure. However, closer examination shows that there are no quasiparticle
peaks crossing EF such that the FS appears pseudo-gapped. Two explanations have been put
forward.

The first is based on DFT calculations for the distorted structure taking into account the
many new sub-bands (Umklapp bands) producing electronic states all over the normal state BZ
with most of the ARPES spectral weight along the bands of the un-reconstructed structure. In
this scenario, the unusual energy broadening of bands may be explained by the contribution of
many (experimentally unresolved and energetically close) sub-bands.

The second explanation is inspired by the peak shape of dispersing features being
particularly large. A spectral function based on polaron formation has all the attributes
to explain the experimental observations. In fact, electron–phonon coupling dresses the
quasiparticles with lattice vibration excitations, leading to a broadened and re-normalized line
shape resembling strongly the experimental observation.

The d0 compounds are very different. Sharp quasiparticle peaks are observed; the FS is not
pseudo-gapped. However, whereas one of the compounds behaves in a Fermi-liquid-like way,
the other undergoes a CDW transition. It is not clear currently what mechanism is responsible
for the instability. It is certain that a delicate balance between interactions of the chalcogen
sp electrons with the transition metal d electrons, their mobility and screening power together
with the reaction of the lattice determines the amazing properties of these materials.

The calculated d1 material’s Fermi surfaces are all similar in shape and resemble an ellipse
with rather flat parts that are susceptible to FS nesting. In order to investigate FS nesting
as the driving mechanism for the lattice distortion the imaginary part of the static electronic
susceptibility has been calculated. The case for FS nesting is rather clear for NbTe2, since
phonon calculations also display a respective softening. It cannot, however, be generalized for
the others. In particular, the situation is more complicated for TaS2.

An important conclusion is that from the present point of view we cannot distinguish
between the two explanations for the behaviour of the ‘one-electron’ compounds, i.e. single
particles with many sub-bands, versus polarons. The interpretation is not unique. It is necessary
to refine the analysis to find unique differences. More accurate simulations are necessary in the
future, in the sense of not only modelling the physics of the N-electron system but including
photoemission matrix elements for a quantitative comparison. This would remove ambiguities
related first to strong versus weak spectral weight and second to initial state (physics, spectral
function) versus final state (experiment specific, geometry) related broadening.

Acknowledgments

Skilful technical assistance was provided by the Neuchâtel mechanics and electronics
workshops. Many helpful discussions with H Beck are gratefully acknowledged. This project
has been supported by the Fonds National Suisse de la Recherche Scientifique through Div. II
and MaNEP.

15



J. Phys.: Condens. Matter 19 (2007) 355002 F Clerc et al

References

[1] Dessau D S, Saitoh T, Park C-H, Shen Z-X, Villella P, Hamada N, Moritomo Y and Tokura Y 1999 J. Supercond.
12 273

[2] Lanzara A et al 2001 Nature 412 510
[3] Whangbo M-H and Canadell E 1992 J. Am. Chem. Soc. 114 9587
[4] Brown B E 1966 Acta Crystallogr. 20 264
[5] Battaglia C, Cercellier H, Clerc F, Despont L, Garnier M G, Koitzsch C, Aebi P, Berger H, Forró L and
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